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Abstract

We propose a sequential learning policy for ranking and selection problems, where we use

a non-parametric procedure for estimating the value of a policy. Our estimation approach

aggregates over a set of kernel functions in order to achieve a more consistent estimator. Each

element in the kernel estimation set uses a di�erent bandwidth to achieve better aggregation.

The �nal estimate uses a weighting scheme with the inverse mean square errors of the kernel

estimators as weights. This weighting scheme is shown to be optimal under independent kernel

estimators. For choosing the measurement, we employ the knowledge gradient method, a myopic

policy that relies on predictive distributions to calculate the optimal sampling point. Our

method allows a setting where the beliefs are expected to be correlated but the correlation

structure is unknown beforehand. This is an extension of the known knowledge gradient with

correlated beliefs. Moreover, the proposed policy is asymptotically optimal.

1 Introduction

We consider the problem of maximizing an unknown function over a �nite set of possible alter-

natives. Our method can theoretically handle any number of �nite alternatives but computational

requirements limit this number to be on the order of thousands. We make sequential measurements
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from the function, obtain noisy measurements and these measurements will be used to estimate

the true values of the function. Our method does not need any assumptions about the structure

of the function such as concavity or Lipschitz continuity but it makes use of the fact that if two

alternatives are close to each other, their values should be similar too, a property that will arise

when using continous functions. We use a Bayesian framework and start by assuming we have a

prior distribution of belief about the values of the function.

This problem arises in an o�-line setting, where it is known as the ranking and selection problem,

and an on-line setting, where it is known as the multi armed bandit problem. Each alternative x has

a reward associated with it, and we are asked to choose one from them. However, the measurements

are often noisy and obtaining them could be expensive. For instance, consider a simulator for a

queueing model with many inputs. Often, these simulators have very long run times and noisy

results. This limits the number of di�erent policies that can be tried in a given time, therefore

�nding the optimum quickly becomes a major concern as well.

Other examples of ranking and selection where a nonparametric belief model might apply include:

• Policy optimization for energy storage. Energy producers have to adjust the amount of energy

to produce in a day to match the demand. They frequently run into the problem of over

producing or underproducing energy in a day. We face the problem of tuning a parametrized

policy on the basis of noisy measurements.

• Design of fuel cells - A fuel cell is parameterized by design parameters such as the size of the

plate used for the anode or the cathode, the distance between the plates, and the concentration

of the solution. These need to be tuned in a laboratory setting, requiring time and money for

each experiment.

• Simulation optimization. The area of simulation optimization deals with optimizing functions

where the function is a black box, that is, not much about the function's structure is known.

Also, in most cases, evaluation from the black box take a signi�cant amount of time, therefore

a fast rate of convergence is needed.
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Although the ranking and selection problem has been extensively studied, most of the previous

work concentrates on problems where beliefs about the alternatives are independent (Nelson et

al., 2001). Even when the measurements are used to update the global estimate, the bene�t of

learning more about the rest of the curve is not often considered in the decision making part.

However, whether it is the parameters for a queueing simulator or commitment levels in an energy

model, the values of nearby measurements will be similar. In other words, alternatives close to each

other will exhibit correlated beliefs. There is a small literature that can handle correlated beliefs;

Frazier et al. (2009) makes signi�cant use of the covariance structure for decision making, Huang

et al. (2006) �t a Gaussian process which also has its own correlation structure. A recent paper by

Villemonteix et. al. (2009), introduces entropy minimization based methods for Gaussian Processes.

Other examples include various meta-models, where the statistical �tting procedure imposes its own

covariance structure (Barton and Meckesheimer, 2006).

The optimization of noisy functions, broadly referred to as stochastic search, has been studied

thoroughly since the seminal paper by Robbins and Monro (1951) which introduces the idea of

stochastic gradient algorithms. Spall (2003) has an extensive coverage of the literature for stochastic

search methods.

Optimal learning methods approach the problem in a di�erent way and consider the value of

information from each measurement. Function evaluations for optimal learning are made in a

smarter way to achieve better convergence rates. There are a variety of algorithms for both discrete

and continuous settings. When the alternatives are discrete, various heuristics such as interval

estimation, epsilon-greedy exploration and Boltzmann exploration can be used (Sutton and Barto

1998, Powell 2007). Gupta and Miescke (1996) introduces the idea of making measurements based

on the marginal value of information under the name (R1, ..., R1) policy. Frazier et al. (2008) extend

this idea under the name knowledge gradient using a Bayesian approach and estimates the value of

measuring an alternative by the predictive distributions of the means. The knowledge gradient is

extended to handle correlations among the alternatives in Frazier et al. (2009).

When the alternatives are continuous, commonly used methods are gradient estimation (Spall,

2003, Fu, 2006), meta-model methods such as response surface methods (Barton and Meckesheimer,

2006), and a series of heuristics such as tabu search and genetic algorithms (Olafsson, 2006). Gra-

dient estimation deals with estimating the gradient of the function in a noisy setting, and using
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the gradient as a direction of steepest descent. Meta-model heuristics, a class of methods also

called Response Surface Methodology (RSM), date back to Cochran and Cox, 1957. It works in two

phases. In the initial phase, RSM measures the alternatives in a way to �t a linear regression model

which gives an ascent direction for a maximization problem. The maximum point of this quadratic

�t is approximated to be the optimal. There are various extensions of RSM, which uses di�erent

polynomials in either of the phases (Barton and Meckesheimer, 2006).

Recently, there is a growing trend in learning problems where the underlying process has a

given structure. Weber and Chehrazi (2010) consider a problem where they maximize over a known

function whose parameters depend on an unknown monotone function. Their method is suitable for

economic problems where demand or supply curves will most likely have this structure. They make

use of B-splines as they are well suited to monotonicity constraints. However, their method cannot

be extended to alternatives in two or more dimensions and they do not propose a well structured

algorithm for their sequential measurement choices.

In the online learning setting with discrete alternatives, the optimal policy is given in Gittins

and Jones (1974) and Gittins (1979). Unfortunately, although their policy is optimal, their deci-

sion making formula requires solving for a constant dependant on the problem setting. Numerical

approximations for the Gittins index is proposed in Chick and Gans (2009). The online learning

problem with continuous decisions have also been studied under various names. Agrawal (1995) has

�rst introduced the continuum armed bandit problem and has come up with an algorithm which

makes use of kernels to estimate nearby points with upper bounds on regret. Tighter bounds on

regret have been obtained by Kleinberg (2005). The response surface bandit problem, introduced

by Ginebra and Clayton (1995), considers a similar problem but assumes a polynomial structure

in the rewards. They �t a quadratic surface to the rewards and use interval estimation methods.

A recent paper by Ryzhov and Powell (2010), introduce one-step ahead policies for online learning

problems, more detail about their algorithm is given in Section 4.2.

We deal with an o�ine learning setting where the beliefs are correlated. We make use of the

knowledge gradient with correlated beliefs introduced by Frazier et. al. (2009). This method which

uses a lookup table belief structure is explained in detail in section 4.1. We use a version of this

knowledge gradient policy although we implement a more sophisticated estimation procedure based

on aggregation of kernels. Our approach is a general case of the method proposed by Mes et. al.
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(2011), where the estimators are hierarchical aggregates of the values. Our policy can also be seen as

an extension of the knowledge gradient from linear beliefs (Negoescu et al., 2011) to non-parametric

beliefs.

This paper makes the following contributions: (1) We propose a sequential Bayesian learning

method that aggregates a set of estimators. (2) We construct a framework for knowledge gradi-

ent with correlated beliefs where non-parametric estimation methods can be used. (3) We show

experimentally that our method is competitive and enjoys high convergence rates.

We �rst introduce our model in section 2. In section 3, we describe our kernel estimation

methods, which uses a dictionary of bandwidths to circumvent the bandwidth optimization problem.

In section 4, we derive the knowledge gradient for this model. In section 5, we present an asymptotic

convergence proof. A demonstration of our algorithm is given in section 6 and we propose an

extension of our policy in section 7. Finally in section 8 we numerically compare our algorithm to

other o�ine learning methods and present our numerical results.

2 Model

We denote the unknown function µ(x) : X 7−→ R, where X ⊂ Rd is a �nite set with M many

elements, in other words X = {x1, . . . , xM} where xi ∈ Rd. With an abuse of notation, we also use

µx for µ(x). We make sequential measurements from µx at time steps n ∈ N+. At time n, after we

decide to measure µxn = µ (xn) and we observe

yn+1
x = µx + εn+1

x ,

where the sampling error εn+1
x is assumed to have a normal distribution with zero mean and known

variance λx and is assumed to be independent for each time step. That is, εn+1
x ∼ N (0, λx). For

the sake of simplicity, we sometimes use βεx = λ−1
x to denote the precision of the measurement.

We let the �ltration Fn be the sigma-algebra generated by
{
x0, y1

x0
, . . . , xn−1, ynxn−1

}
. As the

decisions are made progressively, the decision at time n, xn, will depend on the outcomes of the

previous samples. In other words, xn is an Fn-measurable random variable.
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We let E [•|Fn] = En [•] be the conditional expectation with respect to Fn. We use µnx = En [µx]

to indicate our estimate for µx at time step n.

We assume that we have a Gaussian prior on the value of µ, that is,

µ ∼ N
(
µ0,Σ0

)
.

Our goal is to �nd the optimum point in an o�ine learning setting. For o�ine learning, we

consider the case where we are allowed to make N measurements before making our �nal decision

at time step n = N , when we choose

xN = arg max
x∈X

µNx .

We denote by Π the set of admissible measurement policies. The problem of �nding the best

policy can be written as,

sup
π∈Π

Eπ
[
max
x∈X

µNx

]
,

where Eπ denotes the expectation taken over possible outcomes when the policy π ∈ Π is used.

For the online learning problems, we obtain the reward as we measure and alternative, therefore,

the problem of �nding the best policy is,

sup
π∈Π

Eπ
[
N∑
n=0

γnµxn

]
,

where γ, the discount factor is between 0 and 1 and N is the horizon of the problem. If γ is strictly

smaller than 1, N can also be taken as in�nity.

3 Estimation of µx

We propose a method that aggregates from a set of di�erent kernel estimation methods denoted

K. By di�erent kernel estimation methods, we imply that the elements k0, k1, ..., kK ∈ K, use

di�erent estimation methods (Nadaraya-Watson vs. higher order polynomial regression) and/or

di�erent bandwidths. This allows us to have a range of estimators that utilize di�erent bandwidths.

For any ki ∈ K, the estimate for µx at time n is denoted by µki,n
x . With an abuse of notation, we
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also use µi,nx to denote µki,n
x ; similarly we will use Ki to denote Kki

. We let µ0,n
x to be the sample

mean estimate for µx, which may simply be the prior if there are no observations at x. Furthermore,

although our method can be used with any non-parametric estimation method that uses linearly

weighted sample averages (local linear estimation, Nadaraya-Watson, Gasser-Muller etc.), for the

sake of simplicity and ease of presentation we work with the Nadaraya-Watson estimator. That is

the estimate using kernel ki is given by

µi,nx =
∑

x′∈X Ki(x, x′)µ
0,n
x′∑

x′∈X Ki(x, x′)
.

All of results can trivially be generalized to other weighted estimation methods.

The main estimate for µx at time n is formed by weighting these estimation methods. The

weights are both iteration and state-dependent, and we denote each weight by wi,nx , producing the

estimator

µnx =
∑
ki∈K

wki,n
x µki,n

x .

Aggregating di�erent estimates to obtain an overall estimate has been studied rigorously in the

statistics community under the name model selection type aggregation (Juditsky and Nemirovski

2000, Bunea and Nobel 2008) and under the name boosting in the machine learning community

(Freund and Schapire, 1995) However, the focus is either prediction or estimation in both of these

literatures. Juditsky and Nemirovski (2000) propose a stochastic gradient algorithm which is used

to decrase the estimation error ‖µ− µn‖2, Bunea and Nobel (2008) tackle the same problem by

using sequentially determined weights. Finally, Freund and Schapire's boosting algorithm (1995)

uses a reweighted aggregation scheme to increase the accuracy of prediction.

Before introducing the weights we use, we make two assumptions regarding our estimation

procedures. We also note that our method can be used with any set of weights and the convergence

results still hold if these weights go to zero for biased estimators.

Assumption 1. For a given kernel ki ∈ K, we assume the value of the estimate µix =
∑

x′∈X Ki(x,x
′)µx′∑

x′∈X Ki(x,x′)

is distributed by µix ∼ N
(
µx, ν

i
x

)
, where νix is the variance of

(
µix − µx

)
under our prior belief.

We note that this assumption fails for µx which are local minima or local maxima, as kernel
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estimates for these points will be strictly larger (or smaller) than the true value of the alternative.

However, this assumption is necessary for implementing a Bayesian learning method that uses non-

parametric estimation. Furthermore, as it will be shown in section 5, our policy measures all of

the alternatives in�nitely often (even if this assumption does not hold) and also our estimator's

bandwidth goes to 0. It is a very well known fact that under these conditions, the kernel estimators

will recover the true values and the e�ect of the bias will decline as the sample size increases.

Assumption 2.
(
µix − µx

)
is distributed independently from

(
µi
′
x − µx

)
where ki, ki′ ∈ K and i 6= i′.

Although this assumption fails when we are using kernels of di�erent bandwidths (as two kernels

with di�erent bandwidths use the same set of observed values for the interval of the smaller band-

width), we can get rid of this assumption by having kernel estimators that do not have overlapping

bandwidths. Unfortunately, that is not practical and these kernels have slower rates of convergence.

These assumptions give us weights that are inversely proportional to the estimators' mean square

errors as Proposition 1 shows (proof is given in the Appendix).

Proposition 1. Under Assumptions 1 and 2, the posterior belief on µx given observations up to

time n, is normally distributed with mean and precision given by,

µnx =
1
βnx

β0
xµ

0
x +

∑
ki∈K

((σi,nx )2 + νix)−1µi,nx

 ,

βnx =β0
x +

∑
ki∈K

((σi,nx )2 + νix)−1.

With Proposition 3, we use the weights

wi,nx =
((σi,nx )2 + νi,nx )−1∑

ki′∈K
((σi

′,n
x )2 + νi

′,n
x )−1

, (1)

where
(
σi,nx

)2
:= V ar(µi,nx |Fn) and νi,nx :=

(
Bias(µi,nx |Fn)

)2
= (En[µi,nx − µx])2.

To summarize, after weighting each of our kernel estimators µi,nx by wi,nx , our estimates for µx
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at time n will be given by,

µnx =
∑
ki∈K

wi,nx µi,nx

=
∑
ki∈K

((σi,nx )2 + νi,nx )−1
∑M

j=1 β
n
xKi(x, xj)µ

0,n
xj(∑

ki′∈K
((σi

′,n
x )2 + νi

′,n
x )−1

)(∑M
j=1 β

n
xKi(x, xj)

) .
3.1 Updating Equations for µnx

At time n, we measure xn and observe yn+1
x and under our setting we update the base level

estimates (denoted by k0 ∈ K)

µ0,n+1
x =

(
βnxµ

0,n
x + βεxy

n+1
x

)
/βn+1

x ,

βn+1
x = βnx + βεx.

µi,n+1
x is not updated unless Ki(x, xn) > 0. If Ki(x, xn) > 0,

µi,n+1
x =

∑
x′∈X β

n+1
x′ Ki(x, x′)(x′0,n)∑

x′∈X β
n+1
x′ Ki(x, x′)

=

∑
x′ 6=xn

βx′Ki(x, x′)(x′0,n) +Ki(x, xn)(βnxµ
0,n
n + βεxy

n+1
xn

)∑
x′∈X β

n+1
x′ Ki(x, x′)

.

The weights are given by,

wi,nx =
((σi,nx )2 + νi,nx )−1∑

ki′∈K
((σi

′,n
x )2 + νi

′,n
x )−1

.

Assuming independence among the estimates of di�erent estimation methods (which is also

assumed in Assumption 2), we can use

(
σi,nx

)2 = V ar(µi,nx ) =
∑

x′∈X (βnx′Ki(x, x′))2V ar
(
x′0,n

)
(
∑

x′∈X β
n
x′Ki(x, x′))2

=
∑

x′∈X β
n
x′Ki(x, x′)2

(
∑

x′∈X β
n
x′Ki(x, x′))2

.

If a di�erent weighting method is used, the variance can be estimated by using con�dence interval

methods for kernel estimation. Please see section 4.4 of Fan and Gijbels (1996) for more information

on these methods.

9



We further approximate the bias using

νi,nx = (µi,nx − µ0,n
x )2,

as this is the estimate for the variance of µx − µix.

By Proposition 3, the variance for the �nal estimate is given by,

(σn2 )2 =

∑
ki∈K

((σi,nx )2 + νix)−1

−1

.

4 Measurement Decision

In this section, we �rst review the Knowledge Gradient with Correlated Beliefs (KGCB) which

is a ranking and selection policy developed by Frazier et al. (2009). Our measurement decisions are

made using a variation of KGCB, and we develop this in Section 4.2. Ryzhov and Powell (2010)

show how knowledge gradient policies are easily adapted to deal with online learning problems and

we review this method in Section 4.3.

4.1 Knowledge Gradient with Correlated Beliefs (KGCB)

The Knowledge Gradient with Correlated Beliefs (KGCB), an extension of the (R1, ..., R1) policy

by Gupta and Miescke (1996), is a myopic policy for sequential learning for correlated alternatives

by Frazier et al. (2009). Assuming we have a prior on µx,

µ ∼ N (µ0,Σ0),

and denoting Sn = (µn,Σn) as the knowledge state of the state at time n, the KGCB policy picks

the alternative by computing the marginal value from the information obtained by measuring x.

The knowledge gradient value is given by,

vKG,nx = E
[
max
y
µn+1
y −max

y
µny |Sn, xn = x

]
. (2)
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The knowledge gradient policy then chooses

xn = arg max
x

vKG,nx .

In other words, in a ranking and selection setting, where we are allowed to make one more

measurement before we settle on a decision, KGCB selects the alternative which produces the largest

expected value from a measurement. In a Bayesian setting with Gaussian priors and Gaussian

measurements, the updating equations for µn+1 and Σn+1 are given by (Gelman et al., 2004)

µn+1(x) = µn − yn+1 − µnx
λx + Σn

x,x

Σnex,

Σn+1(x) = Σn − Σnexe
T
xΣn

λx + Σn
x,x

,

where ex is a column vector of zeros except at ex,i where it equals 1. Then, we can rewrite the time

n conditional distribution of µn+1 as,

µn+1 = µn + σ̃(Σn, xn)Z,

where

σ̃(Σn, xn) =
Σnex√
λx + Σn

x,x

,

and Z is a standard normal random variable. Here the parameter σ̃(Σn, xn) represents the predictive

standard deviation of µn+1
x given Fn. Then, plugging this in to equation 3 we obtain,

vKGx = E[max
y

(µny + σ̃y(Σn, xn)Z)|Sn, xn = x]−max
y
µny . (3)

To compute this value, we need to integrate the value of the normal random variable over a convex

function which is given as the pointwise maximum of a�ne functions µny+σ̃y(Σ
n,xn)Z. Frazier et

al. (2009) provide an algorithm of complexity O(M2 log(M)), to compute the above decision. To

demonstrate the algorithm for the calculation of νKGx , we denote ani = µni , b
n
i (x) = σ̃x,i(Σn, xn).

The algorithm �rst orders bni (x) in increasing order, then takes out terms aj , bj if there is some i such

that bi = bj and ai > aj . Finally, the KGCB algorithm removes alternatives who are dominated
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by other alternatives, that is, it drops aj , bj if for all Z ∈ R there exists some i such that i 6= j

and aj + bjZ ≤ ai + biZ . After the redundant alternatives are removed with this procedure, the

knowledge gradient value is given by,

vKGx =
∑

i=1,...,M−1

(bni+1(x)− bni (x))f
(
−
∣∣∣∣ ani+1 − ani
bni (x)− bni+1(x)

∣∣∣∣) , (4)

where f(z) = φ(z) + zΦ(z), and φ(z) is the normal density and Φ is the normal cumulative distri-

bution function.

4.2 Knowledge Gradient with Non-Parametric Estimation (KGNP)

In this section, we derive the knowledge gradient when we are using a nonparametric belief

structure. As given in Section 4.1, the knowledge gradient value for alternative x can be written as

vKGx = E[max
y
µn+1
y −max

y
µny |Sn, xn = x].

In our approach, µn+1
y is given as a weighted sum of other estimators, µi,n+1

y , which can be

rewritten as,

µi,n+1
x =

∑
x′ 6=xn

βx′Ki(x, x′)(x′0,n)∑
x′∈X β

n+1
x′ Ki(x, x′)

+
Ki(x, xn)(βnxn

x0,n
n + βεxn

yn+1
xn

)∑
x′∈X β

n+1
x′ Ki(x, x′)

.

Then, letting Ain+1(x, xn) =
∑

x′∈X β
n
x′Ki(x, x′) + βεxn

Ki(x, xn), we can write

µi,n+1
x =

µi,nx (
∑

x′∈X β
n
x′Ki(x, x′)) + µi,nx βεxn

Ki(x, xn)
Ain+1(x, xn)

+
βεxn

Ki(x, xn)
Ain+1(x, xn)

(
yxn − µi,nx

)
= µi,nx +

βεxn
Ki(x, xn)

Ain+1(x, xn)

(
µxn − µi,nx

)
+
βεxn

Ki(x, xn)
Ain+1(x, xn)

(
yxn − µnxn

)
= µi,nx +

βεxn
Ki(x, xn)

Ain+1(x, xn)

(
µxn − µi,nx

)
+ σ̃(x, xn, i)Z,

where, Z =
(
yn+1
x − µnxn

)
/
√

((σnxn
)2 + λxn) is a standard normal random variable and

σ̃(x, xn, i) =
√

((σnxn
)2 + λxn)

βεxn
Ki(x, xn)

Ain+1(x, xn)
.

Given xn is observed at time n, adding up the estimates µi,n+1
x with their weights, using the
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equations above we rewrite µn+1
x as,

µn+1
x =

∑
ki∈K

wi,n+1
x µi,nx +

∑
ki∈K

wi,n+1
x

βεxn
Ki(x, xn)

Ain+1(x, xn)
(µxn − µi,nx ) +

∑
ki∈K

wi,n+1
x σ̃(x, xn, i)Z

=
∑
ki∈K

wi,n+1
x

(
1−

βεxn
Ki(x, xn)

Ain+1(x, xn)

)
µi,nx + µxn

∑
ki∈K

wi,n+1
x

βεxn
Ki(x, xn)

Ain+1(x, xn)

+ Z
∑
ki∈K

wi,n+1
x σ̃(x, xn, i).

As the weights in the next period will change according to the outcome of the measurement, we

also need to adapt our weights for the knowledge gradient calculation. Following Mes et al. (2011),

we use predictive weights which are the expected values of the weights for the next time step. These

weights are given by:

w̄i,nx (x) ∝

∑
ki∈K

((σ̄i,nx )2 + νi,nx )−1

−1

,

where,

(σ̄i,nx )2 = V ar(µi,n+1
x ) =

∑
x′∈X (βn+1

x′ Ki(x, x′))2V ar(x′0,n)
(
∑

x′∈X β
n+1
x′ Ki(x, x′))2

=
∑

x′∈X β
n+1
x′ Ki(x, x′)2

(
∑

x′∈X β
n+1
x′ Ki(x, x′))2

.

Combining the equations for µi,n+1
x and the predictive weights, we obtain the knowledge gradient,

vKGx (Sn) = E
[
max
x′∈X

anx′(x) + bnx′(x)Z|Sn
]
−max
x′∈X

µnx,

where

anx(xn) =
∑
ki∈K

wi,n+1
x

(
1−

βεxn
Ki(x, xn)

Ain+1(x, xn)

)
µi,nx + µxn

∑
ki∈K

wi,n+1
x

βεxn
Ki(x, xn)

Ain+1(x, xn)
, (5)

bnx(xn) =
∑
ki∈K

wi,n+1
x σ̃(x, xn, i). (6)

This is in the same form of KGCB developed by Frazier et al. (2009). By applying the procedure

described in section 4.1 , the knowledge gradient can be computed using

vKGx (Sn) =
∑

i=1,...,M−1

(bni+1(x)− bni (x))f
(
−
∣∣∣∣ ani+1 − ani
bni (x)− bni+1(x)

∣∣∣∣) .
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4.3 Knowledge Gradient for Online Learning

The knowledge gradient can easily be adapted to online learning problems. Consider a user

who is allowed to collect information for one more time-step. After the current time period, he will

repeatedly choose the alternative which he believes to be the best. That is, if we are at time step n

and we are allowed to make a total of N choices, our expected reward after the current experiment

is given by,

V n(Sn) = (N − n+ 1) max
x

µnx.

Then, as shown in Powell and Ryzhov (2012), the KG value for alternative x for online learning is

given by

vOL−KG,nx = µnx + (N − n)vKG,nx ,

where vKG,nx is the knowledge gradient value for alternative x at time step n.

5 Convergence Results

In this section we show that our policy is asymptotically optimal almost surely. That is, with

probability 1 it �nds the best alternative in the limit. The proof given here is based on the conver-

gence proof in Frazier et al. (2009) for kernel estimation.

Theorem 1. If there is at least one ki such that Ki (x, x′) > 0 for all x, x′ ∈ X , then in the limit,

the KGNP policy measures every alternative in�nitely often, almost surely.

Proof. We start by de�ning Ω0 as the almost sure event for which Lemma 1, 2, 3 and 4 (in Appendix

A) hold. For any ω ∈ Ω0, we let X ′(ω) be the random set of alternatives measured in�nitely often

(i.o.) with the KGNP policy. Assume that there is a set G ⊂ Ω0, with strictly positive probability

such that for all ω ∈ G, X ′(ω) ( X . That is with positive probability, there is at least one alternative

that we measure for a �nite number of times. Fix any ω ∈ G, and let N1 be the last time we measure

an alternative outside X ′(ω) for this particular ω.

Let x ∈ X ′(ω); we �rst show that limn v
KG,n
x = 0. Note that f(z) = φ(z)+zΦ(z) is an increasing

14



function, and bni+1(x)− bni (x) ≥ 0 by the ordering of bni (x) for the KGCB procedure. Then,

vKG,nx ≤
∑

i=1,...,M−1

(bni+1(x)− bni (x))f(0). (7)

From Lemma 10 (given in the appendix), it follows that limn b
n
x′(x) = 0 ∀x′ ∈ X , and for

i = 1, ...,M limn b
n
i (x) = 0. Letting n → ∞ in the above inequality, we obtain, limn v

KG,n
x = 0. In

other words, the knowledge gradient value for in�nitely often sampled alternatives goes to zero in

the limit.

Now, for the same ω ∈ Ω0, we consider x /∈ X ′(ω), an alternative that is not measured in�nitely

often. We will show that limn v
KG,n
x > 0 for this alternative. Let I := {i : lim infn bni (x) > 0}.

From Lemma 4, we know that lim infn bnx(x) > 0. As at least one alternative has to be measured

in�nitely often in the limit, X ′(ω) is non empty, and by Lemma 4, there is at least one x′′ such that

limn b
n
x′′(x) = 0. Combining the last two statements, I and IC are both nonempty. Then, there

is some N2 < ∞ such that, mini∈I bni (x) > maxj /∈I bnj (x) for all n > N2. For all n > N2 by the

monotonicity and positivity of f(z), we have

vKG,nx ≥ min
i∈I,j∈IC

(bni (x)− bnj (x))f
(
−
∣∣∣∣ ani+1 − ani
bni (x)− bni+1(x)

∣∣∣∣) .
Now let U := supn,i,x |ani (x)|. By Lemma 2, U < ∞. Then, supn,i,x |ani (x) − ani+1(x)| ≤ 2U .

And for all n > N2, by monotonicity of f(z), we have

vKG,nx ≥ min
i∈I,j∈IC

(bni (x)− bnj (x))f

(
− 2U
bni (x)− bnj (x)

)
.

Letting, b∗ := mini∈I bni (x) > 0, we take the limit in n, and by the continuity of f(z), we obtain

lim
n
vKG,nx ≥ b∗f

(
−2U
b∗

)
> 0. (8)

Then, for x′ /∈ X ′, limn v
KG,n
x′ > 0, and for x ∈ X ′, limn v

KG,n
x = 0. For x′ /∈ X ′, there will

be some n > N1 such that vKG,nx′ > vKG,nx ∀x ∈ X ′. That is, for some time after N1, we will

choose to measure an alternative outside X ′. However, this contradicts our �rst assumption that

X ′(ω) ( X and there was a last time N1 that we stopped measuring alternatives outside X ′(ω).
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Then, X ′(ω) = X for all ω ∈ Ω0, that is we measure each alternative in�nitely often.

Corollary 1. Under the KGNP policy, limn µ
n
x = µx a.s. for each alternative x.

Proof. By Theorem 1, every x is measured in�nitely often. Then by the strong law of large numbers,

lim
n
µ0,n
x = µx(a.s.).

Note that as all alternatives are sampled in�nitely often, we have limn(σi,nx )2 → 0, for all

ki ∈ K, x ∈ X . Now, �x x ∈ X , and ω ∈ Ω, and let K′ = {ki ∈ K : limn ν
i,n
x (ω) = 0}. Following the

previous statement, these are the kernels which are equal to the true value in the limit. Then, for

any ki /∈ K′, although limn(σi,nx )2 → 0, as the estimator will be biased (limn ν
i,n
x (ω) 6= 0),

lim
n
wi,nx −→ 0.

That is we have

lim
n
µnx = lim

n

∑
ki∈K

wi,nx µi,nx = lim
n

∑
ki′∈K′

wi
′,n
x µi

′,n
x = lim

n
µ0,n
x = µx.

6 KGNP Demonstration

To show how our method works, we consider maximizing over a one-dimensional Gaussian

process with correlation coe�cient, ρ = 0.40 and measurement variance, λ = 0.01. More details

about these functions are given in Section 8.1.1. The generated function is plotted by dotted lines in

Figures 1a and 1b. We start with a non-informative prior of µ0
x = 0 and β0

x = 0 for all alternatives

x, and implement a series of bandwidths by h = {4, 32, 128}. Each estimation method ki ∈ K

uses a local linear �t and the kernel function is Epanechnikov with bandwidth hi. Local linear

�tting is used as it is known to have less asymptotic bias and variance than Nadaraya-Watson or
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Figure 1: Estimates given by di�erent kernel estimation methods. On the left (Figure 1.a) are two
estimators that use local bandwidths (h=1 in blue and h=4 in red). The true value of the function
(µx) is shown in green. More global estimators (h=32 (blue) and h=128 (red)) are given on the
right (Figure 1.b).

Gauss-Muller estimates when the points are highly clustered (Fan and Gijbels, 1996).

We run our policy for 50 time steps, and plot the estimates at the base level (k0) and with k1

in Figure 1.a. In Figure 1.b, we plot our estimates with k2 and k3. The combined estimate which

is calculated by weighting the kernel estimates by their inverse estimated MSEs is given in Figure

2.a. And in Figure 2.b, we plot the weights used for the main estimate.
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Figure 2: Combined estimator and its weights. On the left (Figure 2.a) true values (µx) versus the
combined estimator (µ50

x ). On the right (Figure 2.b): The weights used for the main estimator (w50
x ).

The weights inversely proportional to each estimation method's MSE. Darker colors represent more
local estimators and are concentrated in the region around the function's maximum.
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7 Extension of the Main Algorithm

In this section, we consider an extension of the estimation method proposed in section 3. This

extension uses a di�erent weighting scheme, which is common for aggregation techniques in the

machine learning community. Here, we employ the sequential method proposed by Bunea and

Nobel (2008).

The proposed method uses a tuning parameter η > 0 �xed in the beginning. Then, given that

we are at time period n, we let Cm (ki) =
∑m

j=1

(
yj − µi

xj−1

)2
for all m ≤ n. Then, we choose the

weights given by,

wix = wi =
1
n

n∑
j=1

exp (−ηCj(i))∑
ki′∈K

exp (−ηCj(i′))
.

To obtain their theoratical bounds on the error of this estimation procedure, Bunea and Nobel

(2008) pick η as

η =
(

2 (B1 +B2)2
)−1

,

where for all n and x, B1 and B2 satisfy,|ynx | ≤ B1,|µnx| ≤ B2 and B1 > B2. Therefore we choose to

bound the highest upper value by maxx
(
|µx|+ 3 (βnx )−1/2

)
and let η as,

η =
(

2
(

max
x

∣∣µ0,n
x

∣∣+ 3 (βnx )−1/2
)2
)−1

.

As the estimation method is also used to estimate the predictive distribution, the KGNP policy

with this estimator behaves very di�erently than the one proposed in section 3 that uses MSE.

8 Numerical Experiments

To evaluate our policy numerically, we ran our algorithm on continuous functions on Rd where the

goal is �nding the highest point of the function. The functions are chosen from commonly used

test functions for similar procedures. We follow an empirical Bayesian setting and start with a non-

informative prior. At each time step, we can evaluate the function and obtain a noisy estimate. This

is in line with the methods used in simulation optimization where the optimizer sees the function

as a black box and only obtains the value at given points.

As our algorithm is based on problems with a �nite number of alternatives, we discretize the set
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of alternatives and use an equispaced grid on Rd. Although our method is theoretically capable of

handling any �nite number of alternatives, computational issues limit the possible number to values

on the order of 103.

We compare our algorithm against others in three di�erent settings. In section 8.1, we apply our

policy to one-dimensional Gaussian processes and compare it against three o�ine learning methods

which are explained in more detail in the corresponding section. In section 8.2, we use multi-

dimensional test functions for comparison and in section 8.3 we present an application example.

We compare our method against three di�erent alternatives: Exploration (Expl) is a policy

where a random alternative is tried at every time step. Sequential Kriging optimization (SKO) is

a black-box optimization method from Huang et al. (2006) that �ts a Gaussian process onto the

observed variables. Finally, the knowledge gradient with correlated beliefs (KGCB) is the method

presented in section 4.1. However, in our numerical comparisons, KGCB assumes that the covariance

matrix is known beforehand, although this is not the case in empirical applications. Therefore, it

is expected to outperform all other methods. We denote KGNP-MSE as the policy introduced in

Section 4.2 and KGNP-EXP as the policy that uses the estimation method given in Section 7.

8.1 One-Dimensional Test Functions

In this section, we compare our algorithm on one-dimensional Gaussian processes against three

other methods. Comparisons are done in two main settings: In section 8.1.1, we work on Gaussian

processes with stationary covariance functions. These are multi-variate normal distributions where

the covariance between two variables depends only on the distance between them. In section 8.1.2.,

we run our numerical experiements on Gaussian processes with non-stationary covariance functions,

where the covariance terms depend both on the places of the alternatives and the distance between

them.

8.1.1 Gaussian Processes with Stationary Covariance Functions

In order to evaluate our method on one-dimensional functions, we generate a set of zero-mean,

one-dimensional Gaussian processes on a �nite interval. We discretize our measurement set into
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Figure 3: Gaussian Processes with Di�erent ρ

integers from i to j (in this example from 1 to 100) and we use the exponential covariance function

Cov(i, j) = σ2 exp
(
− (i− j)2

((M − 1)ρ)2

)
,

which gives a stationary process with variance σ2 and length scale ρ. A high σ2 gives a function

that varies more in the vertical axis whereas a high ρ value generates a smoother function with a

smaller number of peaks and valleys. In Figure 3, we plot randomly generated Gaussian processes

with di�erent values of ρ to show the smoothing e�ect as ρ is increased.

For all the one-dimensional examples below, we �x σ2 at 2. M , the number of alternatives, is

�xed at 100, we �x measurement variance λ at 0.01. We vary ρ in each experiment. For all kernel

functions we use a Epanechnikov kernel.

We test on three di�erent combinations of the smoothing parameter ρ, 0.05, 0.075 and 0.10. For

each of these values, we generate 10 functions which gives us 30 di�erent test functions. For each

function, we test each policy 32 times. For each run, we use opportunity cost as the performance

indicator:

max
y
µy − µx∗ ,

where x∗ := arg maxx µNx . We average the opportunity costs for policies for each di�erent set of

parameters over ρ. The only tuning parameter for our method is the set of kernel functions and
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Figure 4: Comparison of policies on stationary GP using λ = 0.01 and various values of ρ

the bandwidths that we start with. For these runs, we used six di�erent kernel estimators, where

each of them �t one-degree polynomials (linear �ts) but with di�erent bandwidths. We picked the

bandwidth size as a geometric series (h = 2, 22, . . . , 26 = 64). The opportunity costs on a log scale

for di�erent policies are given in Figure 4.

We see that although the KGNP policy outperforms the exploration policy, it under performs

both SKO and KGCB. However, this is expected as we are maximizing over a Gaussian process and

SKO �ts a Gaussian process to the evaluated function values. KGNP does not assume any structure

and therefore has a slower rate of convergence. Also, KGCB outperforms all other methods, as it

was given knowledge of the covariance function before it started making evaluations.

8.1.2 Gaussian Processes with Non-Stationary Covariance Functions

Our method easily adapts to other non-stationary covariance functions as it uses a non-parametric

estimation method. To show its performance in these setups, we do the same experiment in the

previous section using a non-stationary covariance function. We choose to use the Gibbs covariance

function (Gibbs, 1997) as it has a similar structure with the exponential covariance function but is

non-stationary. The Gibbs covariance function is given by,

Cov(i, j) = σ2

(
2l(i)l(j)

l(i)2 + l(j)2

)1/2

exp
(
− (i− j)2

l(i)2 + l(j)2

)
,

where l(i) is an arbitrary positive function in i. In our experiments, we use a horizontally shifted

periodic sine curve for l(i)

l(i) = 10
(

sin
(
ρ
π

2
(i+ c1)

)
+ 1
)

+ 1,
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Figure 5: E�ects of varying ρ for the non-stationary Gibbs Gaussian process on the covariance
functions and the function values: ρ values are respectively 2π and 4π. Graphs on the top are
di�erent functions with varying ρ values and below are their corresponding covariance matrices.
Black and white dots correspond to zero and one correlation, respectively.

where ρ determines the periodicity of the covariance function and c1 is a random number with a

uniform distribution on [0, 100] and is used to shift the curve horizontally. For the experiments, we

vary ρ from 2π to 4π and the measurement variance λ in each experiment.

The e�ect of varying ρ for the overall covariance function and the resulting Gaussian process

are given in Figure 6.

Numerical Comparisons For forming the experiments and calculating the opportunity cost,

we follow the same setup as in the previous section. The logarithm of the opportunity costs vs

iterations are given in Figure 6 and 7.

It is seen that although SKO has as a slightly faster convergence in the �rst few iterations, it

does not converge in the limit. This is due to the fact that we have a heteroscedastic covariance
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Figure 6: Comparison of policies on non-stationary GP using λ = 0.01 and various values of ρ
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Figure 7: Comparison of policies on non-stationary GP using λ = 0.25 and various values of ρ

function and the bandwidth estimation for SKO can only handle stationary Gaussian processes.

One could adapt the estimation procedure in SKO to handle such covariance functions but it would

require implementing non-parametric methods to estimate l(i) as it can take any form. Therefore,

in these setups where the function is expected to have a non-stationary covariance function without

any speci�ed structure, non-parametric methods will almost always have better convergence than

parametric methods. Also, we note that, KGCB had the perfect information of the non-stationary

covariance function and therefore converged very rapidly.

8.2 Two-Dimensional Functions

We experiment with two test functions introduced in Branin (1972) and Huang et al. (2006). The

forms, domains and the sources are given in Table 1. We compare the performance of KGNP versus

SKO by testing the policies over di�erent measurement noise levels. As KGNP works on a �nite
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Figure 8: Average opportunity costs for methods with respect to time for the Branin six-hump
camelback test function. Also the best 10% and the worst 10% performances of the methods are
plotted.

grid, we discretized each interval into 30 parts, which gives 961 (31× 31) di�erent alternatives. For

each measurement noise level, we run both of the policies 100 times and we do 50 iterations during

each run. Opportunity cost is calculated following the same procedure in Section 8.1. To estimate

the bandwidth parameter for SKO, the �rst six evaluations are done using a Latin hypercube square

design. The results are given in Table 2. For the six-hump camelback with low variance, the average

opportunity costs of the methods along with their best 10% and worst 10% performances are given

in Figure 8.

Name Functional Form Domain Source

Six-hump f(x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 x ∈ [−1.6, 2.4]× [−.8, 1.2] Branin(1972)

camelback +x1x2 − 4x2
2 + 4x4

2

Tilted Branin f(x) = (x2 − 5.1
4π2x

2
1 + 5

πx1 − 6)2 x ∈ [−5, 10]× [0, 15] Huang et. al (2006)
+10(1− 1

8π ) cos(x1) + 10 + 1
2x1

Table 1: Two-Dimensional Functions for Numerical Experiments

It appears that although KGNP cannot outperform SKO, the results are comparable. However,

this behaviour is expected as we are using a non-parametric method that starts with almost no

assumptions on the function. It is also seen that, KGNP performs worse in environments with high

noise, as higher observation noise with small number of iterations forces the policy to use kernels

with larger bandwidths and hence use a very smooth estimator, making optimization more di�cult.
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KGNP-MSE KGNP-EXP SKO

Test Function λ E (OC) SE[E (OC)] E (OC) SE[E (OC)] E (OC) SE[E (OC)]
Six Hump .122 .0310 .0012 .0504 .0062 .0321 .0030
Camelback .242 .1243 .0281 .2365 .0249 .0495 .0044

Tilted Branin 22 .8414 .2661 .6815 .0650 .2390 .0158

Table 2: Expected Opportunity Cost After 50 Iterations for Two-Dimensional Test Functions
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Figure 9: Average opportunity costs for methods with respect to variance of noise (λ). Error bars
for 95% con�dence intervals are also plotted.

To illustrate the disadvantage of KGNP vs. SKO in higher noise environments, we repeat the

numerical experiment with the Six-Hump Camelback test function. We vary the noise variance λ

from 0.01 to 1 and calculate the opportunity cost after the 50th iteration. For each noise level, we

do the experiment for 100 times. The opportunity costs with respect to the changing noise level is

given in Figure 9.

From the results in Figure 9, we see that SKO and KGNP-MSE perform almost at the same

levels with noise variance less than 0.7. After a certain point (λ = 0.75), KGNP's performance

deteriorates faster than SKO.
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8.3 Application Example

We implement KGNP policy to optimize over a black-box that estimates the value for pumped-

hydro power storage. These are fairly common energy storage devices that store the energy simply

by pumping the water to a higher reservoir. To release the stored energy, the water is released

through turbines. Energy is stored during o�-peak hours and is released during peak hours. As the

price of electricity �uctuates signi�cantly throughout the day, substantial revenues can be made if

energy is stored and released at proper times.

The simulator we are using has two inputs that determine the policy: The �rst parameter de-

termines a price limit (for the hourly energy prices) for which all power is released from storage.

The second parameter similarly de�nes a price limit for which we stop releasing power and start

pumping in energy. In between, the level of buying decreases with exponential decay. The parame-

ters intervals are [60, 80] and [45, 60]. Then, given two inputs within these intervals, the black-box

simulates the operations of a pumped-water power storage using historical energy prices and gives

an estimate of the revenue using the previously described policy.

A single evaluation from the black-box takes about a minute, and as a result we are looking for

an optimization policy that can converge quickly to the optimum policy. We ran both KGNP using

both weighting methods and SKO for 20 runs, each with 50 evaluations. The average of the results

along with a 95% con�dence interval are given in Figure 10.

It is seen that KGNP converges more quickly than SKO. We also note that, as we do not know

the true optimum values for this black-box function, a rigorous comparison is not possible.

9 Conclusion

In this paper, we have presented a sequential measurement policy for o�ine learning problems.

We estimate the value function by aggregating a set of kernels with varying bandwidths. Aggregation

is done using weights that are inversely proportional to the estimated mean square error. Then,

we adapt the correlated knowledge gradient procedure of Frazier et al. (2009) using the covariance

structure created by the kernel estimators. Therefore, our method employs the knowledge gradient

with a time-dependent covariance matrix where a higher weight is put on covariance matrices with

better estimation.
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Figure 10: Performance of KGNP and SKO for the Black-Box
System(Objective± 2 ∗ Standard Error). Each policy was ran 20 times. To estimate the ob-
jective values for iteration, after each run, the values for implementation decisions are estimated
using all the data.

We show that our policy is asymptotically optimal by showing it measures every alternative

in�nitely often and �nds the best alternative in a �nite set with probability 1 as the number of

iterations n goes to ∞. We close with numerical results on single and two-dimensional functions.

For one dimension, we test and compare our policy against several other policies on randomly

generated Gaussian processes. For higher-dimensions, we employ commonly used test functions

from the literature. Numerical experiments in these settings demonstrate the e�ciency of our

policy.

Although our policy performs very well in the numerical experiments, there is a caveat. Kernel

estimation is known to su�er from the curse of dimensionality as the MSE proportional to hd where

h is the bandwidth and d is the number of dimensions. If observations lie in high dimensional

spaces, non-parametric estimation is known to have a poor performance. Because of these reasons,

the e�ciency of our method also degenerates in 3 or more dimensions. Additive models might be

used to handle this curse but this requires making more assumptions on the structure of the function
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A Proofs

In this section, proofs for the propositions and the lemmas used in the paper are given. For simplicity,

with an abuse of notation, we denote Ki(x, x′) as K(x, x′) in some places.

The following proposition shows the optimality of our weighting scheme under Assumptions 1

and 2.

Proposition (Proposition 1 in Section 3). Under Assumptions 1 and 2, the posterior belief on µx

given observations up to time n is normally distributed with mean and precision given by,

µnx =
1
βnx

β0
xµ

0
x +

∑
ki∈K

((σi,nx )2 + νix)−1µi,nx

 ,

βnx =β0
x +

∑
ki∈K

((σi,nx )2 + νix)−1.

Proof. Let C be a generic subset of K. We �rst show that for any such C, the posterior of µx given

µi,nx , for all k ∈ C is normal with mean and precision given by,

µC,nx =
1

βC,n

β0
xµ

0
x +

∑
ki∈K

((σi,nx )2 + νix)−1µi,nx

 ,

βC,nx =β0
x +

∑
ki∈K

((σi,nx )2 + νix)−1.

Then, the proposition follows by letting C = K.

Using induction, we �rst consider C = ∅, then clearly the posterior is the same as the prior

(µ0
x, β

0
x) and the above equation holds as well.

Now assume the proposed equations for the posterior distribution hold for all C of size m, and

consider C′ with m+ 1 elements (C′ = C ∪ {ki′}). By Bayes' rule

PC′(µx ∈ du) = PC(µx ∈ du|Y k′
x = h) ∝ PC(Y k′

x ∈ dh|µx = u)PC(µx ∈ du).
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where Y k′
x stands for the observations for kernel ki;. Using the previous induction statement

PC(µx ∈ du) = ϕ((u− µC,nx )/σC,nx ).

By the independence assumption,

PC(Y k′
x ∈ dh|µx = u) = P(Y k′

x ∈ dh|µx = u)

=
ˆ

R

P(Y k′
x ∈ dh|µkx = v)P(µkx = v|µx = u)dv

∝
ˆ

R

ϕ((µi
′,n
x − v)/σi

′,n
x )ϕ((v − u)/

√
νi′x )dv ∝ ϕ

 µi
′,n
x − u√

(σi,nx )2 + νix

 .

Combining PC(Y k′
x ∈ dh|µx = u) and PC(µx ∈ du), we obtain

PC′(µx ∈ du) ∝ ϕ

 µi
′,n
x − u√

(σi,nx )2 + νix

ϕ((u− µC,nx )/σC,nx ) ∝ ϕ((u− µC′,nx )/σC
′,n

x ).

This gives us the desired result.

The following lemmas are used for the Proof of Theorem 4.

Lemma 1. For all x ∈ X ,lim supn maxm≤n
∣∣∣µ0,m
x

∣∣∣ is �nite a.s.

Proof. We �x x ∈ X . For each ω, we let Nn
x (ω) the number of times we measure alternative x until

time period n,

Nn
x (ω) =

∑
m≤n−1

1{xm=x}.

Nn
x (ω) is an increasing sequence for all ω and the limit N∞x (ω) = limn→∞N

n
x (ω) exists. We
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bound
∣∣∣µ0,n
x

∣∣∣ above by,
∣∣µ0,n
x

∣∣ ≤ β0
x

βnx

∣∣µ0,0
x

∣∣+
βnx − β0

x

βnx

∣∣∣∣∣
∑n−1

j=1 1{xi=x}y
j+1
x

Nn
x (ω)

∣∣∣∣∣
≤ β0

x

βnx

∣∣µ0,0
x

∣∣+
βnx − β0

x

βnx
|µx|+

βnx − β0
x

βnx

∣∣∣∣∣
∑n−1

j=1 1{xj=x}y
j+1
x −Nn

x (ω)µx
Nn
x (ω)

∣∣∣∣∣
=
β0
x

βnx

∣∣µ0,0
x

∣∣+
βnx − β0

x

βnx
|µx|+

λx
(
βnx − β0

x

)
βnx

∣∣∣∣∣∣
n−1∑
j=1

1{xj=x}

(
yj+1
x − µx

)
λx

∣∣∣∣∣∣ .
βn

x−β0
x

βn
x

is bounded above by 1, and the �rst two terms are clearly �nite, therefore we only concentrate

on the �niteness of the last term. Also, we note that
(yj+1

x −µx)
λx

has a standard normal distribution.

As the normal distribution has �nite mean, we let Ω0 be the almost sure event where
∣∣∣yjx∣∣∣ 6=∞ for

all j ∈ N+. We further divide Ω0 into two sets, Ω̂0 = {ω ∈ Ω0 : N∞x (ω) <∞} where alternative x

is measured �nitely many times, and Ω̂C
0 = Ω0\Ω̂0 = {ω ∈ Ω0 : N∞x (ω) =∞} where alternative x

is measured in�nitely often. We let the event Hx =
{
ω ∈ Ω0 : lim supn maxm≤n

∣∣∣µ0,m
x

∣∣∣ =∞
}
. We

will show that P
(

Ω̂0 ∩Hx
)

= 0 and P
(

Ω̂C
0 ∩Hx

)
= 0 to conclude that P (Hx) = P

(
Ω̂0 ∩Hx

)
+

P
(

Ω̂C
0 ∩Hx

)
= 0.

For any ω ∈ Ω̂0∩Hx, letMx(ω) be the last time that x is measured, that is for all n1, n2 ≥Mx(ω),

Nn1
x (ω) = Nn2

x (ω). Then, we have that

Mx(ω)∑
j=1

λx1{xj=x}

∣∣∣∣∣∣
(
yj+1
x − µx

)
λx

∣∣∣∣∣∣ = lim sup
n

max
m≤n

Mx(ω)∑
j=1

λx1{xj=x}

∣∣∣∣∣∣
(
yj+1
x − µx

)
λx

∣∣∣∣∣∣
= lim sup

n
max
m≤n

m∑
j=1

λx1{xj=x}

∣∣∣∣∣∣
(
yj+1
x − µx

)
λx

∣∣∣∣∣∣
≥ lim sup

n
max
m≤n

∣∣∣∣∣∣
m∑
j=1

λx1{xj=x}

(
yj+1
x − µx

)
λx

∣∣∣∣∣∣
≥ lim sup

n
max
m≤n

∣∣µ0,m
x

∣∣ =∞,

where Mx (ω) < ∞ by construction. However, this also implies that yj+1
x = ∞ or yj+1

x = −∞ for

at least one i, therefore ω /∈ Ω̂0 and we get a contradiction. Then, P
(

Ω̂0 ∩Hx
)

= 0.

To show that P
(

Ω̂C
0 ∩Hx

)
= 0, we let Ji := 1{xi=x}

(yj+1
x −µx)
λx

and remind that Ji has a standard

33



normal distribution. We further de�ne a subsequence G (ω) ⊂ N+ by,

G (ω) :=
{
j ∈ N+ : 1{xj=x} = 1

}
,

and we let J∗ := (Ji)i∈G(ω). By construction,G (ω) has countably in�nite elements for all ω ∈ Ω̂C
0 .

Here, we make use a version of the law of iterated logarithms (Billingsley, 1995) which states that,

lim sup
n

max
m≤n

∣∣Z̄n∣∣ <∞ (a.s.),

where Z̄n =
∑n

j=1 zi/n and zj are i.i.d. random variables with zero mean and variance 1. We let

Ω1 be the almost sure set where this law holds for Z̄n = J∗n, and the proof follows by noting that

P
(

Ω̂C
0 ∩Hx ∩ Ω1

)
= 0.

Lemma 2. Assume we have a prior on each point
(
β0
x > 0,∀x ∈ X

)
, then for any x, x′ ∈ X , ki ∈ K,

the following are �nite a.s. : supn
∣∣∣µi,nx ∣∣∣, supn

∣∣anx′(x)
∣∣ and supn

∣∣bnx′(x)
∣∣.

Proof. For any x ∈ X , ki ∈ K and n ∈ N, let pi,nx′ = βn
xKi(x,x

′)∑M
j=1 β

n
xKi(x,xj)

. Clearly, for any x′ ∈ X all

pi,nx′ ≥ 0 and
∑

x′∈X p
i,n
x′ = 1. That is for any x′ and n, pi,nx′ form a convex combination of µ0,n

x′ .

Then,

sup |µi,nx | = sup
n

∣∣∣∣∣
∑M

j=1 β
n
xKi(x, xj)µ

0,n
xj∑M

j=1 β
n
xKi(x, xj)

∣∣∣∣∣ = sup
n

∣∣∣∑ pi,nx µ0,n
x

∣∣∣ ≤ sup
n,x
|µ0,n
x |.

And the last term is �nite by Lemma 1.

To show the �niteness of supn |anx′(x)|, we note that anx′(x) is a linear combination of µi,nx

and µi,nx′ , where the weights for µi,nx are given by
(

1− βε
xn
K(x,xn)

Ai
n+1(x,xn)

)
and the weight for µi,nx′ is∑

ki∈K w
i,n+1
x

βε
xn
K(x,xn)

Ai
n+1(x,xn)

. These weights are between 0 and 1, and the �niteness follows.

To see supn |bnx′(x)|, �rst note that for any ki ∈ K and any x, x′ ∈ X ,

Ain+1(x, x′) =
∑
x̂∈X

βnx̂K(x, x̂) + βεx′K(x, x′),

is an increasing sequence in n. And trivially, (σnx)2 = 1/βnx is a decreasing sequence in n. Then for
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any n ∈ N,

σ̃(x, x′, i)n =
√

((σnx′)
2 + λx′)

βεx′K(x, x′)
Ain(x, x′)

≤ σ̃(x, x′, i)0 <∞.

As bnx′(x) is a convex combination of σ̃(x, x′, i) where the weights are given by wi,nx , it follows

that supn |bnx′(x)| is �nite.

Lemma 3. For any ω ∈ Ω, we let X ′(ω) be the random set of alternatives measured in�nitely often

by the KGNP policy. Fix ω ∈ Ω, for any x /∈ X ′(ω) let x′ ∈ X be an alternative such that x′ 6= x,

Ki(x, x′) > 0 for at least one ki ∈ K, and x′ is measured at least once. Also assume that µx 6= µx′ .

Then, lim infn
∣∣∣µi,nx − µ0,n

x

∣∣∣ > 0 a.s. In other words, the estimator using kernel ki has a bias almost

surely.

Proof. As x /∈ X ′, there is some N < ∞ such that µ0,n
x = µ0,N

x for all n ≥ N . And as µ0,N
x =

µ0
x+
∑

m≤N βε
xyxm1(xm=x)

β0
x+
∑

m≤N βε
x1(xm=x)

, it is given by a linear combination of normal random variables (yxm) and is

a continuous random variable.

As x 6= x′ is at least measured once, and Ki(x, x′) > 0, µi,nx contains positively weighted µ0,n
x′

terms. Also using the assumption µx′ 6= µx, µ
0,n
x′ will not be perfectly correlated with µ0,n

x . Then,

as both are continuous random variables the probability that µ0,n
x will be equal to any cluster point

of µi,nx is zero a.s. That is lim infn
∣∣∣µi,nx − µ0,n

x

∣∣∣ > 0.

Remark. If µx are generated from a continously distributed prior (e.g. normal distribution), then

for all x 6= x′, P(µx 6= µx′) = 1 and the assumption for the previous lemma holds almost surely.

Lemma 4. For any ω ∈ Ω, we let X ′(ω) be the random set of alternatives measured in�nitely often

by the KGNP policy. For all x, x′ ∈ X , the following holds a.s.:

• if x ∈ X ′, then limn b
n
x′(x) = 0 and limn b

n
x(x′) = 0,

• if x /∈ X ′, then lim infn bnx(x) > 0.
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Proof. We start by considering the �rst case, x ∈ X ′. If Ki(x, x′) = 0 for all ki ∈ K, bnx′(x) =

bnx(x′) = 0 for all n by the de�nition. Taking n→∞ we get the result.

If Ki(x, x′) > 0 for some ki ∈ K, showing limn b
n
x′(x) = 0 is equivalent to showing that for all

ki ∈ K

σ̃(x, x′, i) =
√

((σnx′)
2 + λx′)

βεx′K(x, x′)
Ain+1(x, x′)

−→ 0.

As noted previously, Ain(x, x′) is an increasing sequence. If x ∈ X ′, then we also have that,

βnx →∞, and

1
Ain+1(x, x′)

≤ 1
βnxK(x, x′)

−→ 0.

Therefore limn b
n
x′(x) = 0 under this case as well. Showing limn b

n
x(x′) = 0, reduces to showing

that,

1
Ain+1(x′, x)

−→ 0,

which is also given by above.

Now for the second result, where Ki(x, x′) > 0 for some ki ∈ K and x /∈ X ′; by the de�nition of

bnx(x)

bnx(x) ≥ w0,n+1
x σ̃(x, x, 0) = w0,n+1

x

√
((σnx)2 + λx

βεx
βnx + βεxK(x, x)

.

For a given ω ∈ Ω, let N be the last time that alternative x is observed. Then, for all n ≥ N ,

βnx = βNx ≤ β0
x +Nβεx <∞.

Recall that (σnx)2 = 1/βnx and λx = 1/βεx, and that these terms will be �nite for a �nitely

sampled alternative. For lim infn bnx(x) > 0 to hold, we only need to show that the weight stays

above 0, that is,

lim inf
n

w0,n
x = lim inf

n

(
((σ0,n

x )2)−1∑
ki′∈K

((σi
′,n
x )2 + νi

′,n
x )−1

)
> 0.

Almost sure �niteness of the numerator has been shown above, which means we only need to

show that

lim sup
n

∑
ki′∈K

((σi
′,n
x )2 + νi

′,n
x )−1 <∞.
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First we divide the set of kernels into two pieces. Let K1(ω, x) be the set such that, for ω ∈ Ω,

there is at least one x′ ∈ X ′ such that Ki(x, x′) > 0. In other words, there is one in�nitely

often sampled point (x′) close to our original point (x) that has in�uence on the prediction. Let

K2(ω, x)=K\K1. Now as all terms are positive,

lim sup
n

∑
ki′∈K

((σi
′,n
x )2 + νi

′,n
x )−1 ≤ lim sup

n

∑
ki′∈K1

((σi
′,n
x )2 + νi

′,n
x )−1 + lim sup

n

∑
ki′∈K2

((σi
′,n
x )2 + νi

′,n
x )−1.

For all ki′ ∈ K1, we have that by Lemma 3, lim infn ν
ki′ ,n
x > 0, thus even if lim infn(σki′ ,n

x )2 = 0,

the limsup for the �rst term on the right will be �nite. Finally, for all ki′ ∈ K2, as none of the points

using ki′ ∈ K2 using to predict µx are sampled in�nitely often, letting

NX = max
x/∈X ′

Nx,

where Nx is the last time point x is sampled, we have NX <∞. Then, βnx for all x /∈ X ′(ω) is �nite

(and bounded above by NX(maxx/∈X ′ βεx)) and

∑
ki∈K2

((σi,nx )2 + νi,nx )−1 ≤
∑
ki∈K2

((σi,nx )2)−1

≤
∑
ki∈K2

(
∑

x′∈X β
n
x′Ki(x, x′))2∑

x′∈X β
n
x′Ki(x, x′)2

≤
∑
ki∈K2

(
∑

x′∈X NX(maxx/∈X ′ βεx)Ki(x, x′))2∑
x′∈X NX(maxx/∈X ′ βεx)Ki(x, x′)2

<∞

where the last term does not contain n. Taking the limit supremum over n for both sides gives us

the �nal result.
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